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Abstract

Restless bandits are a useful model for many real-world prob-
lems, but existing approaches have been restricted to simpli-
fied action settings that allow for tractable solutions. Here,
we consider CORMAB, a broader class of problems with
combinatorial actions that cannot be decoupled across the
arms of the restless bandit, requiring direct solving over the
joint action space. Leveraging recent advances in embedding
trained machine learning models into optimization problems,
we propose SEQUOIA, an algorithm for training a rein-
forcement learning agent to find a good policy that considers
long-term reward by embedding a Q-network directly into a
mixed-integer program to select one of exponentially many
combinatorial actions in each timestep. SEQUOIA builds on
the widely used deep Q-network framework but also bene-
fits from a set of enhancements that accelerate training by
exploiting the structure of CORMAB. We empirically val-
idate this approach on four novel restless bandit problems
with combinatorial constraints—specifically multiple inter-
ventions, traveling salesperson, bipartite matching, and ca-
pacity constraints—and show that SEQUOIA significantly
outperforms a number of myopic policies.

1 Introduction

Reinforcement learning (RL) has made tremendous progress
in recent years to be able to solve a wide range of practi-
cal problems (Treloar et al. 2020; Marot et al. 2021; Sil-
vestro et al. 2022; Degrave et al. 2022). While successful
at dealing with large or infinite state spaces, RL becomes
more challenging when the action space is combinatorial.
This limitation is pertinent to many real-world sequential
decision-making problems, where resource constraints fre-
quently lead to combinatorial action spaces (Dulac-Arnold
et al. 2020). Consider for example a sequential resource al-
location problem in which public health workers are dis-
patched to visit patients. The workers have a limited daily
budget to maximize patient wellbeing. Even when the num-
ber of workers and patients is small, these requirements give
rise to an exponentially large combinatorial action space to
optimize over.

A suitable framework for modeling such problems is that
of restless multi-armed bandits (Niño-Mora 2023), which
have been applied to settings from clinical trial design (Vil-
lar, Bowden, and Wason 2015) to patient interventions (Mate
et al. 2022). An “arm” of the restless bandit corresponds to a
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Figure 1: (A) Standard restless bandits, where each arm
transitions depending on whether it is acted upon, can be
solved by threshold-based policies that do not require com-
binatorial action selection. (B–D) However, restless bandit
approaches have not been able to address more challeng-
ing settings where the combinatorial constraints on the ac-
tions cannot be decoupled. Our paper considers this class of
strongly coupled restless bandits (CORMAB). We describe
these new problem formulations for restless bandits in detail
in Section 3.

patient in the aforementioned public health example. At each
timestep, an arm is in one of a finite number of states (e.g.,
representing the health of that individual), and we aim to se-
lect actions so that arms move into the more beneficial states.
Historically, restless bandit solutions have relied on simplifi-
cations that exploit problem structure for tractability. For ex-
ample, the common Whittle index policy (Whittle 1988) re-
quires that each arm transitions independently and that each
action impacts only a single arm (Fig. 1A). This formulation
enables a threshold-based top-K policy which decouples the
combinatorial action selection by learning policies for each
arm independently.

However, real-world applications often involve compli-
cated problem structures that impede decomposing the com-
binatorial actions (Fig. 1B–D). In public health settings, for
example, actions may represent heterogeneous interventions



that may impact not just a single arm but several simultane-
ously. Consider the problem of planning a path for a health
worker to visit patients within a travel time constraint: each
action (path) impacts multiple patients and cannot be de-
composed further (e.g., into separate edges) while ensuring
the overall path is feasible. Or, individuals may be acted on
by multiple actions simultaneously (e.g., exposure to differ-
ent messaging campaigns or nurse visits), with a potentially
nonlinear cumulative effect. In these more complex settings,
we can no longer decompose the actions 2 and must rea-
son about the entire combinatorial structure simultaneously,
which existing algorithms cannot accommodate. To that end,
we consider in this paper the restless bandit problem with
combinatorial actions (which we call CORMAB) and pro-
vide four problem formulations to highlight the broad appli-
cably of this setting.

The existing literature at the intersection of RL and com-
binatorial optimization has not considered sequential prob-
lems where the action space per step is combinatorial.
Rather, existing approaches solve single-shot combinatorial
optimization problems with RL by decomposing them into
iterative choices from a small action set (e.g., iteratively
choosing the next node in a traveling salesperson problem)
(Khalil et al. 2017; Barrett et al. 2020; Delarue, Anderson,
and Tjandraatmadja 2020).

Here, we consider for the first time sequential combina-
torial settings where the reward comes not from a single-
shot action but is incurred after enacting a policy over many
timesteps. We leverage recent advances in integrating deep
learning with mathematical programming, in which a neu-
ral network with ReLU activations can be directly embed-
ded into a mixed-integer program. Incorporated in an RL
training procedure, this technique enables our approach to
learn the long-term reward using a deep learning approxi-
mation of the value function, while tractably optimizing this
function over the combinatorial space at each step with a
mixed-integer program. We call our algorithm SEQUOIA,
for SEQUential cOmbInatorial Actions.

Our paper contributes: (1) four new problem formula-
tions for restless bandits, (2) a general-purpose solution ap-
proach that combines deep Q-learning with mathematical
programming, and (3) empirical evaluations demonstrating
the strength of this approach. Our work opens up a broad
class of problem settings for restless bandits with more com-
plex action constraints. Beyond restless bandits, our work
provides a proof-of-concept for general RL planning over
Markov decision processes with per-timestep combinatorial
action spaces.

2 Problem description

We consider offline planning for restless bandits with com-
binatorial action constraints, where the transition dynamics
and reward are known a priori, but the state and action space
are too large to be solved directly. Specifically, we consider
the setting where the arms are strongly coupled so we cannot
no longer decouple the arms of the bandit into independent
controlled Markov chains using Lagrangian relaxation. We
begin by describing the standard restless bandit, then present

a general formulation for constrained combinatorial-action
RMABs, which we refer to as CORMAB.

2.1 Standard restless bandits

The standard restless bandit problem is modeled by a
set of J Markov decision processes (MDPs). Each MDP
(S,A,P, R) represents one arm of the restless bandit. The
state sj 2 S of an arm j transitions to next state s

0
j depend-

ing on the selected action aj 2 A. We use the vector s 2 S⇥

to denote the joint state of all J arms, and similarly a 2 A⇥

for the joint action space.
The state of the arms evolve according to transition func-

tions Pj : S ⇥ A ⇥ S ! [0, 1], assumed to be known. Tra-
ditional restless bandits assume that each action acts on a
single arm only, enabling an optimal policy to decouple the
solution into separate calculations per arm.

Each state sj 2 S has an associated reward rj(sj), and the
total reward at each timestep t is the sum of the rewards of
the arms: R(t)(s) =

PJ
j=1 rj(sj). Our objective is to max-

imize the cumulative reward across H timesteps. The tra-
ditional restless bandit problem requires selecting a binary
action aj 2 {0, 1} for each arm, subject to a total budget
constraint

PJ
j=1 aj  B.

2.2 Restless bandits with strongly coupled actions

We now consider CORMABs, a broader class of problems
for restless bandits where actions may be strongly coupled
due to combinatorial constraints. We consider a set of N ac-
tions ai that each impact the transition probability of some
subset of the arms. At each timestep, we must pick some
combinatorial action over the arms. We require that the
action vector a satisfies a 2 C ✓ A⇥ where the sub-
space C is defined by a set of constraints; we provide in-
stantiations of C in Section 3. Now the transition proba-
bilities may be coupled, with individual actions impacting
multiple arms. We denote the joint transition probability as
P

⇥ : SJ ⇥AN ⇥ SJ ! [0, 1]J .
From a given state s, by Bellman’s optimality principle

we seek the combinatorial action a that maximizes the ex-
pected long-term reward, with discount factor � 2 [0, 1):

max
a2C

Q(s,a) (1)

s.t. Q(s,a) = R(s) + �

X

s02S
P

⇥(s,a, s0)V (s0)

8s 2 S⇥
,a 2 C

V (s) = max
a2C

Q(s,a) 8s 2 S⇥
.

This value function is difficult to implement as the max
over actions a is taken over a combinatorial number of pos-
sible actions, and there are a combinatorial number of con-
straints (for each possible state s). Enumerative methods are
therefore intractable, so we will address CORMAB of this
form using RL.

3 Four motivating problem settings

We introduce four instantiations of CORMAB problems
which cannot be modeled or solved by standard restless ban-



dit approaches. These widely applicable resource allocation
problems consider compounding effects, path planning, bi-
partite matching, and capacity constraints. For each prob-
lem, we provide an overview and a mixed-integer program-
ming formulation; in each case, action selection requires
various forms of constrained optimization. To the best of our
knowledge, the following problem formulations are all novel
for restless bandits.

3.1 Multiple interventions for public health

In public health, different informational campaigns may im-
pact different (groups of) individuals. Interventions could in-
clude, for example, radio, ads at bus stations, church events,
or fliers. We model this problem as a restless bandit where
one action can impact a fixed subset of arms. We propose
the first combinatorial setting in which (a) one action im-
pacts multiple arms, and (b) multiple actions may be applied
simultaneously to each arm with compounding effects.

Here, each action ai corresponds to one messaging inter-
vention, each arm j corresponds to a patient, and the state sj
of a patient is equal to 1 if they are actively engaged in a
health program and 0 otherwise. For example, consider the
graph in Fig. 1B. Then for arm j = 2, we have:

P2(s2 = 0,a, s02 = 1) = �(!2,s=0 + !0p2a0 + !1p2a1)

P2(s2 = 1,a, s02 = 1) = �(!2,s=1 + !0q2a0 + !1q2a1) ,

where � : R ! [0, 1] is a known link function with known
parameters ! that represent the response of each patient to
different interventions. For example, !0,2,0 represents the ef-
fect of action a0 on arm j = 2 when it is in the 0-state; the
larger !0,2,1, the more likely this arm will transition to the
1-state if a0 = 1.

In the public health literature, these curves have often
been described as S-shaped, such as in a widely used model
of smoking cessation (Levy, Bauer, and Lee 2006) The S-
shape implies that as individuals are impacted by more ac-
tions, they first experience increasing returns in their proba-
bility of transition to an improved state (the first part of the
S) before plateauing as the effect saturates (the second part).
While realistic, S-shaped curves are often NP-hard to ap-
proximately optimize because they violate the diminishing
returns assumptions required for submodular optimization
(Schoenebeck and Tao 2019).

Note that this combinatorial problem formulation general-
izes the standard restless bandit: we can recover the original
restless bandit setting by considering N = J actions, where
the jth action is connected to the jth arm, !pj = 0 for all j,
and edge weights of 1.

3.2 Path-constrained CORMAB

Suppose that each arm of the restless bandit lies in a net-
work (V, E). We have one arm at each node j 2 V , with
edges (j, k) 2 E connecting the nodes. Each (undirected)
edge (j, k) has cost djk corresponding to the distance along
the edge. The action is to pick a path along the edges in E
with a constraint on its total length T ; we act on each arm
whose node we visit along the path. For example, nodes may
correspond to physical homes where patients reside and we

are trying to schedule an at-home patient intervention (Ker-
gosien, Lenté, and Billaut 2009). The static variant of this
problem is a traveling salesperson problem (TSP) with prof-
its (Feillet, Dejax, and Gendreau 2005).

We encode this path-planning problem as flow constraints
on a time-unrolled graph. We introduce flow variables fj,k,t,
which equals 1 if we take the edge from node j to k as the t-
th segment of our path and 0 otherwise. Thus for every edge
(j, k) in E , we have decision variables fj,k,t and fk,j,t for all
t 2 {1, . . . , T}. Node 2 V is the source, where we must
begin and end the path. Finally, decision variable aj indi-
cates whether we act on arm j, i.e., we pass through node j.

max
f ,a

Q(s,a) (2a)

s. t.
X

k:( ,k)2E

f ,k,0 = 1 (2b)

X

k:(k, )2E

fk, ,T = 1 (2c)

X

t2[T ]

X

(j,k)2E

fj,k,t = T (2d)

X

k:(j,k)2E

fk,j,t =
X

k:(k,j)2E

fj,k,t+1 8j 2 V (2e)

aj 
X

t2[1]

X

k:(j,k)2E

fj,k,t 8j 2 V (2f)

aj � fj,k,t 8j, k 2 V (2g)
fj,k,t 2 {0, 1} 8j, k 2 V, t 2 [T ] (2h)
aj 2 {0, 1} 8j 2 V (2i)

3.3 Schedule-constrained CORMAB

Now suppose both actions (volunteer health workers) and
arms (patients) have limited time windows for scheduling.
We must assign workers to patients to form a valid schedule,
where workers and patients are matched such that they have
mutually agreed upon times. Each worker can only be as-
signed once. This problem resembles bipartite matching and
can be formulated as follows:

max
x,a

Q(s,a) (3a)

s.t.
X

j,s

xijs  1 8i (3b)

X

i

xijs  1 8j, s (3c)

aj 
X

i,s

xijs 8j (3d)

aj � xijs 8i, j, s (3e)
xijs 2 {0, 1} 8i, j, s (3f)
aj 2 {0, 1} 8j (3g)

The scheduling constraints are encoded as binary matrices,
where Wis and Ajs denote whether resource i (or patient j)
is available at timeslot s. We have decision variables xijs

whenever a worker i and patient j are both available at



timeslot s, so xijs exists iff Wis = Ajs = 1. Then, xijs = 1
indicates the assignment of worker i to arm j at timeslot s,
and aj indicates whether we “pull” arm j. Each worker can
only be assigned once.

This problem also generalizes RMABs: each pulling ac-
tion requires solving a matching problem to assign workers
to each action. The standard RMAB problem would corre-
spond to the setting where all workers and all patients are
available for all timeslots.

3.4 Capacity-constrained CORMAB

Suppose we have N workers each with a budget con-
straint bi, and the J arms each have some cost cj to call
them. This problem is an instance of the generalized as-
signment problem (Özbakir, Baykasoğlu, and Tapkan 2010),
which is NP-hard with LP relaxations that offer a (1�1/e)–
approximation (Fleischer et al. 2006).

The goal is to assign workers to patients while respect-
ing each worker’s capacity constraint. We have a decision
variable xij for all i and j, indicating whether worker i gets
assigned to arm j.

max
x,a

Q(s,a) (4a)

s.t.
X

j

cjxij  bi 8i (4b)

aj 
X

i

xij 8j (4c)

aj � xij 8i, j (4d)
xij 2 {0, 1} 8i, j (4e)
aj 2 {0, 1} 8j (4f)

The standard RMAB setting would correspond to a single
worker (N = 1) with a budget bi = B.

As we are motivated by public health interventions, we
use these as motivating descriptions in the descriptions, but
these problem structures exist in many other applications.
Importantly for public health and other applications, these
constraints could be further specified incorporate additional
desiderata, such as fairness constraints. For example, if we
had demographic features associated with each patient, we
could encode a requirement to visit at minimum some frac-
tion of each subgroup, such as the most elderly.

4 Solving RMABs with combinatorial actions

We present a novel algorithm, SEQUOIA, which builds on
deep Q-learning (DQN) by integrating a mixed-integer pro-
gram (MIP) for combinatorial action selection. While we fo-
cus on the restless bandit problem setting, SEQUOIA gen-
eralizes to general sequential planning problems with com-
binatorial actions, provided that the restrictions on the ac-
tions can be represented as constraints in a mixed-integer
program.

We start by introducing the basic DQN+MIP framework
in Section 4.1, summarized in Algorithm 1. Then, in Section
4.2, we provide a set of strategies to find a good initialization
for the Q-network and improve computational efficiency.

Algorithm 1: SEQUOIA for RL with combinatorial actions
Input: Restless bandit instance
Parameter: Epsilon-greedy parameter ✏, target update fre-
quency C

1: Replay memory D
2: Initialize action–value function Q with weights ✓
3: Strategically generate actions, and store state–action

samples in memory D
4: Pre-train Q with myopic observed reward, using state–

action samples from D
5: Initialize target network Q̂: ✓� = ✓

6: Construct MIP with current network weights ✓
7: for episode = 1, . . . , E do

8: for t = 1, . . . , T do

9: With probability ✏ select random action a(t)

10: Otherwise, select a(t) = argmaxa MIP(s(t),a; ✓�)
11: Execute action a(t) and observe reward r

(t) and
next state s(t+1)

12: Store transition (s(t),a(t)
, r

(t)
, s(t+1)) in D

13: Sample random minibatch of transitions
(s(k),a(k)

, r
(k)

, s(k+1)) from D
14: Set y(k) = r

(k) + �maxa MIP(s(k),a; ✓�)
15: Gradient descent step on (y(k)�Q(s(k),a(k); ✓))2

16: Every C steps, update Q̂ = Q

17: return Q-function Q

4.1 Q-learning with combinatorial actions

Deep Q-learning aims to estimate Q(s,a), the long-run
value of action a in state s, by parameterizing the estimated
Q-function with a neural network. It samples (action, next
state, reward) sequences via a mix of random actions and on-
policy samples (i.e., actions that maximize the current esti-
mate of Q). The samples are used to improve the Q-function
via temporal difference (TD) updates which aim to minimize
the residual in the Bellman equation.

This framework breaks down when the action space is ex-
ponentially large, as in our setting, leading us to modify the
standard DQN setup. The first challenge is that typical uses
of DQN output Q-values for all actions simultaneously by
mapping the state to one network output per action. Since
our domain has an exponentially large action space, we in-
stead use DQN to estimate the Q-value of a given state–
action pair, where the action is represented as a binary vec-
tor of length N .

While this allows for a concise representation of the Q-
function, it leaves a critical bottleneck: computing the tem-
poral difference loss requires identifying the best action ac-
cording to the current Q-function (Algorithm 1 lines 10
and 14). That is, it requires solving problems of the form
maxa Q(s,a; ✓) where ✓ denotes the parameters of the Q-
network. In the typical DQN, this problem would be solved
by evaluating all actions and picking the best one, but brute-
force enumeration is infeasible for combinatorial spaces.

Instead, we leverage recent advances that enable encod-
ing a neural network into a mixed-integer program (MIP)
to enable optimization (Fischetti and Jo 2018; Dumouchelle



et al. 2022). These methods incorporate an extra set of vari-
ables and constraints in the MIP which simulate a forward
pass of the neural network to produce Q. Embedding the
network in a MIP can be achieved using additional variables
and constraints with size linear in the size of the network. In
every new episode, we build a new MIP instance which adds
components that represent the current state of the policy net-
work Q along with the original constraints on the actions.
Then the inner step of argmaxa (line 10) solves that MIP to
pick a combinatorial action a for state s that maximizes the
expected long-run return of pair (s,a), based on estimates
from the neural network Q.

Our algorithm runs DQN on this modified Q-network and
best action selection procedure. On top of these key changes
to accommodate combinatorial actions, we incorporate stan-
dard best practices for DQN (Hessel et al. 2018), includ-
ing double DQN, prioritized experience replay (Schaul et al.
2016), and gradient clipping. Once the network is trained, at
inference time we simply optimize over the MIP encoding
of the final Q-network to compute the action to take in each
state that is encountered.

4.2 Smart action generation and other

computational enhancements

We now introduce some algorithmic enhancements that
leverage the structure of our domain to provide an infor-
mative initialization for the Q-network, greatly speeding up
training and improving the quality of the learned policy.

There are two independent critical computational bottle-
necks with integrating neural networks into MIPs. First,
solving the MIP at every timestep is extremely expensive:
for the discounted future reward estimate in line 14, we must
perform that calculation for every sample in the minibatch
at every timestep. For a training instance with E episodes,
time horizon H , and minibatches of size M , we have EHM

repeated MIP solves. Even a modest problem setting of
E = 1,000, H = 20, and M = 32 requires a prohibitive
640,000 solves of the MIP. Second, Q-learning requires di-
verse samples of the state and action spaces to learn well,
but both the state and action are combinatorial.

We design an initialization process, run before the main
DQN algorithm, to help alleviate both of these computa-
tional bottlenecks. The main idea is to generate cheap but in-
formative samples which provide approximate rewards and
a wide diversity of actions, allowing us to warm-start the
Q-network much more effectively before training with on-
policy samples. We use three strategies for this process.

First, we initialize the Q-network to approximate the
single-step expected rewards. This leverages our access to
a cheap simulator for the state transitions and immediate re-
wards: we can draw a large training set of sampled state-
reward pairs from the simulator and fit the Q-network to the
immediate reward. This provides an informative initializa-
tion when we start learning the long-run rewards.

Second, we draw sampled actions according to the im-
plied myopic policy to seed the training process with a set
of “reasonable” actions. Specifically, we use the MIP em-
bedding of the Q-network to find the action maximizing the

learned approximation of the single-step reward. This al-
lows the method to work out-of-the-box for different set-
tings, without the user having to explicitly derive a MIP for-
mulation for the optimal myopic action. We then train the
network using temporal difference updates on the sampled
actions and rewards to learn their long-term values.

Third, we introduce diversity into the sampled actions
with additional random perturbations. One source of diver-
sity is to randomly flip entries of the myopic action (we
call this “perturbed myopic”). Another is to random sample
infeasible actions by, e.g., starting with the all-ones or all-
zeros vector for a and then randomly flipping a small num-
ber of entries (isolating the impact of including or knocking-
out individual actions). This leverages the property that, in
restless bandits, we can simulate valid state transitions even
for infeasible actions because the state transitions are de-
fined per-arm. Incorporating perturbed and even infeasible
actions greatly increases the diversity of potential samples
because for some combinatorial constraints it may be dif-
ficult to even find a single feasible solution (and otherwise
may be difficult to explore parts of the action space). Similar
issues arise if the per-step feasible action space is relatively
small (e.g., if the budget is small with N � B). Including
examples of infeasible actions provides a more diverse train-
ing set for the Q-network, encouraging better generalization
even to feasible actions.

Throughout, we incorporate two additional strategies to
lower variance and improve computational efficiency. First,
we directly calculate the expected one-step reward (instead
of using the observed reward after state transition), which re-
duces variance. Second, we memoize the solutions to MIPs
seen multiple times in between updates to the Q-network. As
we use experience replay with a reasonably small buffer size
(10,000) we likely expect to see repeated samples, enabling
us to store the optimal solution to avoid repeated solves. To
avoid stale solves, we discard old samples at the same rate
that we update the target function Q̂.

5 Experiments

We evaluate the performance of SEQUOIA on the four dif-
ferent CORMAB settings from Section 3.

The need for sequential planning in RMABs Myopic
policies can perform arbitrarily badly in restless bandits. In
Fig. 3, we offer a clear example through a restless bandit
with two arms, three states, and budget B = 1. Suppose
the probability p of transitioning right one state is p = 1
when the arm is acted upon and p = 0 otherwise (in which
case the arm will move leftward). If the arms begin at state
s(0) = (0, 0), the myopic policy would always act on arm 1,
whereas the optimal policy would be to repeatedly act on
arm 2. Thus in these experiments, we consider multi-state
settings (specifically with |S| = 4 states) to emphasize the
sequential aspect of the problem.

Baselines We evaluate performance against several base-
lines, including a number of myopic policies that evaluate
the best single-step action, ignoring expected future return.
We implement an optimal MYOPIC policy as a MIP that di-
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Figure 2: SEQUOIA achieves consistently higher performance compared to the three myopic policies across all problem
settings. We evaluate with J = {20, 40, 100} arms and N = {5, 10, 20} workers for each setting. The vertical axis depicts the
average per-timestep reward, normalized by the reward achieved by the RANDOM baseline.
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Figure 3: Even in a simple two-arm problem setting with
budget B = 1, a myopic policy can lead to arbitrarily poor
performance in restless bandits. Each arm has three states,
with positive reward in each state. Suppose that the proba-
bility p of transitioning right one state is p = 1 when the
arm is acted on and p = 0 otherwise. This problem instance
leads to the following rewards on the right, where the gap
between myopic and SEQUOIA can be arbitrarily large de-
pending on the rewards at the rightmost state.

rectly encodes (as a linear objective) the expected reward of
the immediate next state, based on the current state and tran-
sition probabilities (and no neural network). To understand
the challenge of the problem, we also consider two addi-
tional myopic baselines. One is a SAMPLING approach (He
et al. 2016) that randomly samples k = 100 actions of the�N
B

�
possible combinatorial actions and picks the action with

the largest expected myopic reward. The final myopic base-
line is an ITERATIVE solution construction algorithm that
greedily selects one feasible component (an action i 2 [N ])
at a time to build up the full action a.

Lower bounds on performance are benchmarked by RAN-
DOM which randomly samples a feasible action, and NO
ACTION which always takes the null action a = 0. We are
not aware of additional RL algorithms from the literature
that could be applied to CORMAB; this is due to the large
combinatorial action space. For instance, many algorithms
in the RLLib library (Liang et al. 2018) support discrete ac-
tions, but not combinatorial ones.

Experiment setup For each problem instance, we ran-
domly generate transition probabilities, constraints, and ini-
tial states. We ensure consistency by enforcing, across all
algorithms, that transition dynamics and initial states across

every problem instance (across every episode) are consis-
tent across all methods. We evaluate the expected reward of
each algorithm across 50 episodes of length H = 20 and av-
erage results over 30 random seeds. Runtime analysis and
implementation details, including hyperparameters, are in
the appendix, along with additional results for the multiple-
intervention setting (Section 3.1).

Results SEQUOIA achieves consistently strong perfor-
mance over the optimal MYOPIC baseline, demonstrating
the importance of accounting for long-run return, even in
relatively simple MDP settings such as restless bandits.
Additionally, note that the optimal MYOPIC approach can
only be implemented in settings with simple (e.g., linear
or quadratic) constraints and objectives that can be handled
by an integer programming solver, whereas SEQUOIA can
learn arbitrary objective functions.

To better understand the challenging combinatorial struc-
ture of the problem, we look at the myopic baselines which
achieve significantly lower performance. For example the
ITERATIVE myopic approach performs on average 14.6%
lower than optimal MYOPIC—an important takeaway, given
that many heuristic approaches for overcoming combina-
torial action structure rely on iterative construction heuris-
tics (Khalil et al. 2017; Barrett et al. 2020). The SAMPLING
heuristic comes close to MYOPIC with 20 arms, but dramati-
cally falls behind at 100 arms — an unsurprising result, con-
sidering the action space jumps many orders of magnitude
from roughly

�20
5

�
= 15,504 actions to

�100
20

�
⇡ 5.4 ⇥ 1020

(without considering feasibility constraints). This result un-
derscores the challenge of effectively exploring combinato-
rially large action spaces.

To show generality and robustness of SEQUOIA, we
used the same network architecture and training procedure
for all of the different problem settings. Our method works
well even without per-domain hyperparameter tuning, which
would improve performance further.

6 Related work

Restless multi-armed bandits (RMABs) generalize
multi-armed bandits by introducing arm states that tran-
sition depending on whether the arm is acted on. Even
when transition probabilities are fully known, computing



an optimal RMAB policy is PSPACE-hard (Papadimitriou
and Tsitsiklis 1994) due to the combinatorial state and
action space. Heuristic approaches to solve RMABs center
around the threshold-based Whittle index policy (Whittle
1988; Weber and Weiss 1990) which uses a Lagrangian
relaxation to exploit the fact that the arms are weakly
coupled (Adelman and Mersereau 2008; Hawkins 2003).
However, these relaxations break down in strongly coupled
action settings (Ou et al. 2022), our setting here.

Many other solution approaches for RMAB problems are
variants of the Whittle index policy, including deep learn-
ing to estimate the Whittle index by training a separate net-
work for each arm (Nakhleh et al. 2021); tabular Q-learning
(Avrachenkov and Borkar 2022); and explicitly encoding the
Bellman update as a MIP to overcome uncertainty in transi-
tion probabilities (Wang et al. 2023). Here, we introduce the
first solution approach for restless bandits integrating both
deep learning and mathematical programming.

RL and combinatorial optimization An iterative heuris-
tic to solve a static combinatorial optimization problem can
be represented as a Markov decision process. RL can then be
used to obtain a good policy for constructing a feasible so-
lution. By “static”, we mean deterministic problems that are
fully specified. Instances of this iterative approach include
(Khalil et al. 2017; Barrett et al. 2020), with a more complete
survey in (Mazyavkina et al. 2021). The action space in such
approaches is not combinatorial: to construct a solution to a
traveling salesperson problem, one needs to select the single
next node to visit in every timestep of the decision process.
Breaking with this approach, Delarue, Anderson, and Tjan-
draatmadja (2020) consider combinatorial actions in a ca-
pacitated vehicle routing problem, where at every timestep
of the decision process a subset of nodes that form a tour and
respect the vehicle’s capacity constraint must be selected.
This combinatorial action selection problem is formulated
as a MIP whose objective function is the Q-value as esti-
mated by a ReLU neural network.

In the RL literature, it is fairly common to deal with com-
binatorial state spaces, for example AlphaGo (Silver et al.
2016), but combinatorial action spaces have received far less
attention. Dulac-Arnold et al. (2015) deal with large discrete
(but not combinatorial) action spaces. Their action selection
strategy is sub-linear in the number of actions, but this is still
prohibitive when the number of actions is exponential as in
our setting. He et al. (2016) consider simply sampling a fixed
number of actions from the

�N
B

�
combinatorial action space.

Tkachuk et al. (2023) provide a theoretical analysis of RL
with combinatorial actions when the value function approx-
imation is linear in the state–action pair. Because the reward
functions in many practical applications may be non-linear,
we opt for neural network function approximations which
are beyond the scope of the aforementioned theory. Brantley
et al. (2020) propose an algorithm for budget-constrained
continuous action spaces in a tabular RL setting. However,
our state spaces are also combinatorial, making a tabular
state representation impossible (in addition to our discrete
action space). Song et al. (2019) propose to split up combi-
natorial action selection into iterative non-combinatorial se-

lections; an iterative policy must be learned for this purpose.
In contrast, and similar to Tkachuk et al. (2023), we assume
oracle access to an optimization solver that can find feasible
combinatorial actions at each timestep, removing the need
for any iterative decomposition of the combinatorial selec-
tion as the latter requires learning an additional policy.

Embedding neural networks in optimization models

There has been considerable interest in embedding trained
neural networks into larger mathematical optimization mod-
els. Two primary use cases are (1) adversarial machine learn-
ing problems such as finding perturbations of an input that
worsen the prediction maximally (Fischetti and Jo 2018)
or verifying network robustness (Tjeng, Xiao, and Tedrake
2018); (2) replacing a function that is difficult to describe
analytically with a neural network approximation of it and
then optimizing some decision variables over the approxi-
mation (Lombardi and Milano 2018). As feed-forward neu-
ral networks with ReLU activations are piecewise-linear
functions in their inputs, they can be represented using a
polynomial-size mixed-integer linear program (Fischetti and
Jo 2018; Anderson et al. 2020; Ceccon et al. 2022). Our
work falls in the second class of use cases. Closely related
to our approach is the work of Delarue, Anderson, and Tjan-
draatmadja (2020) which focuses on static vehicle routing.
While we leverage the same MIP representation of ReLU
networks, our focus is on a wide range of CORMAB prob-
lems that are inherently sequential rather than static.

7 Conclusion

While much recent work has focused on RL for combina-
torial optimization, here, we address RL with combinato-
rial optimization (over actions). Specifically, we consider of-
fline planning for restless multi-armed bandits where action
constraints prevent decoupling the problem. Beyond solv-
ing coupled MDPs such as restless bandits, this approach
can also be applied to other general RL problems with per-
timestep combinatorial actions as long as the set of feasible
actions can be described in a MIP. Future work could explore
additional applications enabled by our framework, both in
the CORMAB setting or beyond in online combinatorial op-
timization.

Despite having proposed a set of effective computational
strategies that accelerate RL training for CORMAB, we be-
lieve more work remains to be done in speeding up the so-
lution of the combinatorial action selection MIP. This sub-
problem is solved in every timestep of every episode during
training and testing; exploring heuristic or approximate so-
lutions would be of great interest. While our contributions
are algorithmic and computational, CORMAB could ben-
efit from theoretical analysis, possibly extending the work
of Tkachuk et al. (2023) in the linear function approxima-
tion setting to the more practical neural network setting.
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